
Version 2

Valeriy G. Bashkatov
PROGRESS TECHNOLOGIES

2017/NOV

Implementing load balancing

for PAS for OpenEdge

based on Tomcat Load Balancing

Page 1 of 29

1 Table of Contents

2 INTRODUCTION ... 2

3 WHY WE NEED LOAD BALANCING? ... 3

4 LOAD BALANCING FOR APACHE TOMCAT ... 4

5 CREATE AND CONFIGURE THE WORKER INSTANCES ... 6

5.1 CONFIGURING OF VIRTUAL MACHINES... 6

5.2 CREATING AND CONFIGURING THE WORKER INSTANCES .. 7

5.2.1 Creating a node1 instance .. 7

5.2.2 Creating a node2 instance .. 10

6 INSTALLING AND CONFIGURING APACHE HTTP SERVER .. 11

6.1 INSTALLING APACHE ... 11

6.1.1 Installation MOD_JK on the Apache HTTPD ... 12

6.1.2 Configuring Apache for load balancing .. 13

7 CREATING AND DEPLOYING THE WORKER.PROPERTIES FILE ... 15

8 VERIFYING LOAD BALANCING ... 19

8.1 CONNECT WORKER INSTANCES TO THE DATABASE ... 21

9 ADDITIONAL MATERIALS ... 23

Page 2 of 29

2 Introduction

Load balancing allows you to control incoming traffic by controlling and

distributing client requests across multiple network devices to optimize

resource utilization and reduce maintenance time.

In the classic OpenEdge AppServer to implement load balancing used

Progress Name Server Load Balancer product.

For new application server – Progress Application Server for OpenEdge

(PAS for OpenEdge) – load balancing is implemented by using standard HTTP

options based on one of the third-party technologies such as Apache HTTP,

Apache Tomcat or Amazon Elastic Load Balancing.

In this article, I will talk about how to implement load balancing for PAS for

OpenEdge using Apache Tomcat server (Apache Tomcat Load Balancing).

This article does not pretend to describe the completeness of this topic,

but only aims to provide a starting point and to demonstrate the initial

configuration of Apache Tomcat Load Balancing to spread the load between

PAS for OpenEdge instances.

For any additional information on the configuring and work with Apache
Tomcat Load Balancing refer to Internet resources, for example, to the official
websites https://httpd.apache.org/ and http://tomcat.apache.org/.

https://httpd.apache.org/
http://tomcat.apache.org/

Page 3 of 29

3 Why we need load balancing?

For a typical application that is serviced by a small number of users and

that does not have serious business requirements, a load balancing may not

be needed.

But the situation is completely different with those applications that are

key to business. For example, applications that handle billing operations. If a

service of this kind "falls", then some business process also will cease to

function.

In this case, we have a single point of failure. To eliminate it we should

configure load balancer cluster for our application server.

As result, if one of the application servers fails or if we need to perform

maintenance, the load balancer will forward all user requests to the second

application server.

1. Load balancing is a solution to the problem of a single point of failure

of application server.

Then, as we know, application servers may use a lot of memory or CPU

resources, especially when many users work with it. The more users, the

more server resources are needed to process their requests.

2. Load balancing it is also scalability and optimization of resource use.

Page 4 of 29

4 Load Balancing for Apache Tomcat

Apache Tomcat server is built into PAS for OpenEdge. Therefore, to

implement load balancing using the Apache Tomcat server, you must assign

a virtual load balancer worker (lb), which will be used to redirect client

requests from the Apache Web Server into the actual working PAS instances

which will process that requests.

In addition, if you want to monitor the status of worker instances, you can

add one more a virtual worker in the load balancing scheme and assign it as

a metrics gatherer (status). The role of metrics gatherer involves control and

inform about the status of the worker instances. But even if the metrics

gatherer will not be set, the load balancer will detect when a worker instance

to become unresponsive and stop sending requests to them.

The following figure shows the simple configuration of the load balancer,

which we implement in this article.

In a real production environment, usually, Apache web server - it's a public
server available from the Internet. Thus, Apache HTTP Server must be placed
in the demilitarized zone (DMZ) in terms of safety.

Page 5 of 29

As the servers for our example, we will use the five virtual machines with

pre-installed from scratch CentOS 7.

The first server is an external Apache Tomcat server. There is nothing

except for a web server. But I will not describe how this server is configured,

since this is a topic for a separate article and I do not use it in this example.

On servers with instances of PAS for OpenEdge installed the following

licenses:

 Progress Production Application Server for OpenEdge (11.7)

On the database server, the following licenses installed:

 Progress OpenEdge Advanced Enterprise RDBMS (11.7)

 Progress 4GL Development System (11.7)

Some of the advantages of Apache Tomcat Load Balancing in comparison

with the implementation of load balancing based on the Apache proxy host

load balancing:

 Virtual worker, which will perform load balancing (in the figure

presented as lb), «knows» about the status of each application server

instance in its group and will not send requests to an incapacitated

instance;

 Tomcat Load Balancing allows you to configure one more a virtual

worker as monitor of online statistics for each worker instance in the

load balancing group (in the figure is presented as status).

The process of configuration the load balancing based on Tomcat consists

of the following tasks:

1. Create a worker instances of PAS for OpenEdge on different servers.

2. Install or upgrade an existing local Apache HTTP Server.

3. Configure Apache HTTP Server.

4. Configure MOD_JK module in Apache configuration.

5. Creating and deploying worker.properties file.

Page 6 of 29

5 Create and configure the worker instances

As worker instances, among which will be implemented load balancing, we

will create two instances of the PAS for OpenEdge, each of which will run in

its own virtual machine. For convenience, let's call these instances and,

accordingly, their virtual machines as node1 and node2.

5.1 Configuring of virtual machines

In our example, virtual machines used for the worker instances have the

following IP-address: 172.16.95.148 and 172.16.95.149. By default, both

machines hostname is localhost. We need to change the hostname

localhost for these virtual machines on the names node1 and node2

respectively.

To change the hostname on CentOS 7, use the following command (as

root):

hostnamectl set-hostname New_HostName

172.16.95.148:

hostnamectl set-hostname node1

172.16.95.149:

hostnamectl set-hostname node2

To make all changes to take effect, we need to restart the service

 systemd-hostnamed:

systemctl restart systemd-hostnamed

Verify the host name:

hostnamectl status

In this article, it is assumed that on the virtual machines with worker
instances already installed OpenEdge 11.7 with the appropriate licenses (see
previous section). For installation OpenEdge refer to the OpenEdge
documentation, “OpenEdge Getting Started: Installation and Configuration”.

Page 7 of 29

You will see something like this:

Static hostname: node2

Icon name: computer-vm

Chassis: vm

Machine ID: a5003f6992044150941f05577bde3054

Boot ID: cc43313da082435e82a02c4046096d76

Virtualization: vmware

Operating System: CentOS Linux 7 (Core)

CPE OS Name: cpe:/o:centos:centos:7

Kernel: Linux 3.10.0-514.6.1.el7.x86_64

Architecture: x86-64

From this point, virtual machines for the worker instances will be called

node1 and node2.

5.2 Creating and configuring the worker instances

Worker instance of PAS for OpenEdge can be in any directory on the

server. For our convenience, we will create them in WRKDIR directory, which

is typically /usr/wrk directory.

5.2.1 Creating a node1 instance

1. Connect to the virtual machine node1 as root.

2. Execute proenv command:

[root@node1 ~]# proenv

3. Create a worker instance named node1:

proenv> $DLC/servers/pasoe/bin/tcman.sh create

-p 8820 -P 8821 -s 8822 $WRKDIR/node1

Where:

-p 8820 – port number for http;

-P 8821 – port number for https;

-s 8822 – port number for shutdown;

$WRKDIR/node1 – the path and the name of the instance

directory.

Page 8 of 29

4. Activate AJP13.

By default, in PAS for OpenEdge this protocol is disabled, so we must

enable it:

a. Let's move to the bin directory of the node1 instance:

cd $WRKDIR/node1/bin

b. Check the status of AJP13 protocol:

tcman.sh feature AJP13

AJP13=off

c. To activate, use the following command:

tcman.sh feature AJP13=on

d. Check the status again:

tcman.sh feature AJP13

AJP13=on

5. Next, set the AJP13 port number. By default, this number is 8009.

a. For node1 instance set the port number 50001 with the

following command:

tcman.sh config psc.as.ajp13.port=50001

b. Verify that the port is properly established:

tcman.sh config psc.as.ajp13.port

psc.as.ajp13.port=50001

Apache JServ Protocol (AJP) - a binary protocol that enables transfers
incoming requests from the web server to the application server. It is generally
used in a load-balanced systems. It also supports the monitoring of state of the
server.

In case when in one server is supposed to work multiple instances of PAS for
OpenEdge it is recommended for each instance establish a unique AJP13 port
number.

Page 9 of 29

c. Open port 50001 in the firewall:

firewall-cmd --permanent --add-port=50001/tcp

d. To access the web-based applications hosted on PAS for

OpenEdge, we need to open one of the HTTP or HTTPS ports

depending on the security requirements of the application. For

node1 instance we pointed out as the HTTP port 8820 – open

this port:

firewall-cmd --permanent --add-port=8820/tcp

e. Reload firewall to apply the changes:

firewall-cmd --reload

In the PAS for OpenEdge client access to applications through special

protocols: APSV, REST, WEB и SOAP.

By default, in the production version of the PAS for OpenEdge for security

reasons all communication protocols disabled (APSV, REST, WEB, SOAP).

While in the versions of PAS for OpenEdge designed for the development

these protocols are enabled by default.

In this article to demonstrate the work of load balancing, we will use APSV

protocol designed to interact with the application server through the

ABL(4GL). Accordingly, it is necessary to activate this protocol. To activate the

protocol used adapterEnable property with a value of 1 in the instance

configuration file conf/openedge.properties. To activate the protocol, we

can edit the configuration file manually or by using a script oeprop.

To activate APSV protocol for node1 worker instance in the directory bin

execute the following command:

oeprop.sh node1.ROOT.APSV.adapterEnabled=1

To check the status of the port, we can use the same command but

without assignment.

Perform the start of the worker instance node1:

tcman.sh start

Page 10 of 29

5.2.2 Creating a node2 instance

To create a working instance node2, we need to perform the same actions

as when creating an instance node1. Because node2 we placed on a

separate virtual machine, the ports for that instance we leaving the same as

for node1. Differ is only in instance name.

1. Connect to the virtual machine node2 as root.

2. Execute proenv command.

3. Create a worker instance named node2:

proenv>$DLC/servers/pasoe/bin/tcman.sh create -p 8820

-P 8821 -s 8822 $WRKDIR/node2

4. Activate AJP13 and assign the port; open ports AJP13 and HTTP:

cd $WRKDIR/node2/bin

tcman.sh feature AJP13=on

tcman.sh config psc.as.ajp13.port=50001

firewall-cmd --permanent --add-port=50001/tcp

firewall-cmd --permanent --add-port=8820/tcp

firewall-cmd --reload

5. Activate APSV protocol:

oeprop.sh node2.ROOT.APSV.adapterEnabled=1

6. Start worker instance node2:

tcman.sh start

Page 11 of 29

6 Installing and configuring Apache HTTP

Server

Due to the simplicity and flexibility in managing, the Apache Web Server is

one of the most popular and powerful web servers in the world. In this part,

we will perform its installation and configuration for load balancing.

6.1 Installing Apache

Apache Web Server in our example will be on a separate virtual machine

with the IP-address 172.16.95.146.

In the first for ease of identification, we will change the hostname of the

server to apache:

hostnamectl set-hostname apache

systemctl restart systemd-hostnamed

Now perform the installation (as root):

1. Clean up yum:

yum clean all

2. Update all our packages:

yum -y update

3. To install Apache, execute a single command is enough:

yum -y intall httpd

4. Allow access to Apache through the firewall. To do this, open the

standard ports 80 (HTTP) and 443 (HTTPS):

firewall-cmd --permanent --add-port=80/tcp

firewall-cmd --permanent --add-port=443/tcp

5. Reload firewall:

firewall-cmd --reload

Page 12 of 29

6. Configure Apache to start at boot:

systemctl enable httpd

7. Start Web Server:

systemctl start httpd

8. Check status:

systemctl status httpd

We should see this string:

Active: active (running)

9. Stop the web server, because at this stage it is not necessary for us:

systemctl stop httpd

6.1.1 Installation MOD_JK on the Apache HTTPD

What is mod_jk? mod_jk is a module of the Apache web server, which

allows applications to interact through HTTPD Server with Apache Tomcat. In

other words, mod_jk allows us to connect the Tomcat instance (in this case

PAS for OpenEdge) with Apache HTTPD web server.

Mod_jk installation process is simple, but nevertheless it requires

compilation.

First, make sure that we have installed all the necessary modules:

yum install httpd-devel apr apr-devel apr-util apr-util-

devel gcc gcc-c++ make autoconf libtool

Then download the mod_jk from the official web-site (at the time of this

writing this article, the current version number of the module was 1.2.42):

http://tomcat.apache.org/download-connectors.cgi

http://tomcat.apache.org/download-connectors.cgi

Page 13 of 29

To download execute the following:

mkdir -p /opt/mod_jk/

cd /opt/mod_jk

wget http://www.eu.apache.org/dist/tomcat/tomcat-

connectors/jk/tomcat-connectors-1.2.42-src.tar.gz

tar -xvzf tomcat-connectors-1.2.42-src.tar.gz

cd tomcat-connectors-1.2.42-src/native

Compile and install the module in native/ directory:

./configure --with-apxs=/usr/bin/apxs --enable-api-

compatibility

make

libtool --finish /usr/lib64/httpd/modules

make install

If everything goes with no errors, then in the directory

/etc/httpd/modules should be appear mod_jk.so file:

ls -la /etc/httpd/modules/mod_jk.so

-rwxr-xr-x. 1 root root 1553160 Feb 9 18:00

/etc/httpd/modules/mod_jk.so

6.1.2 Configuring Apache for load balancing

Configuring Apache HTTP Web server for Tomcat load balancing includes:

 Enabling the AJP13 protocol for communicating with the load

balancer.

 Referencing the load balancer.

To enable the AJP13 protocol, un-comment the following modules in the

HTTP server’s httpd.conf file:

LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

Page 14 of 29

To reference the load balancer, add the following definitions to the

httpd.conf file:

#workers.properties load balancing config

LoadModule jk_module apache_install_dir/modules/mod_jk.so

JkWorkersFile apache_install_dir/conf/workers.properties

JkShmFile apache_install_dir/logs/mod_jk.shm

JkLogFile apache_install_dir/logs/mod_jk.log

JkLogLevel info

JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkMount /status status

JkMount /* lb

• LoadModule - this makes the mod_jk module available for use.

• JkWorkersFile - the path to the worker configuration file, which we

will create in the next step.

• JkShmFile - the path to the shared memory file for the module.

• JkLogFile - the path to the module log file.

• JkLogLevel - the level of logging for the module. The valid values

for this attribute are "debug", "error" or "info".

• JkMount - this is used to map a certain URL pattern to a specific

worker configured in the workers configuration file. Here, we use it

twice - once to enable “/status” as the access URL for a virtual

monitoring worker, and once to map all requests we want to be

handled by the cluster to the virtual worker that contains the load

balancing capability (lb).

Note that the load-balancing instance must be named lb.

Refer to the Tomcat documentation for the latest information.

Page 15 of 29

7 Creating and deploying the

worker.properties file

The worker.properties file defines the load-balancing instance, the

metrics-gathering instance, and the worker instances that execute client

requests. To create and deploy the worker.properties file:

1. Create a preliminary worker.properties file by running the tcman

workers command in the bin directory of each instance of PAS for

OpenEdge. Since the instances ideally run on separate computers,

you must run the command on each of those computers and create

your preliminary worker.properties file for each instance.

2. Combine the worker.properties files that you have generated for all

instances into a single worker.properties file and place it in the conf

directory of the Apache HTTP server.

3. Comment out the property, worker.common.host, in the combined

worker.properties file.

4. Add a workers.instance_name.host=host_name property to each

instance’s configuration.

5. Save and close the file.

Follow these steps for our example:

1. For instance, node1:

a. Connect to a virtual machine node1.

b. Open proenv.

c. Change directory to bin:

cd node1/bin

d. Execute command to generate workers.properties file:

tcman.sh workers

workers.properties file will be created in the

/usr/wrk/node1/temp directory.

Page 16 of 29

2. For instance, node2:

a. Connect to a virtual machine node2.

b. Open proenv.

c. Change directory to bin:

cd node2/bin

d. Execute command to generate workers.properties file:

tcman.sh workers

workers.properties file will be created in the

/usr/wrk/node2/temp directory.

Merge workers.properties files by copy/paste and at the same time

remove the duplicate rows. We should get a file with the following contents

(to save space commented lines have been deleted from a file):

worker.list=node1,node1

worker.common.type=ajp13

worker.common.socket_timeout=10

worker.common.connect_timeout=10000

worker.common.socket_keepalive=true

worker.common.ping_mode=I

worker.common.ping_timeout=10000

worker.common.retry_interval=100

worker.common.recovery_options=7

worker.node1.port=50001

worker.node1.reference=worker.common

worker.node2.port=50001

worker.node2.reference=worker.common

Now correct the merged file.

First of all pay attention to worker.list line. Our configuration defines

two virtual workers and two actual workers, which map to my Tomcat

servers. Here I made only one change. The virtual workers “status” and “lb”

I defined in the worker.list property, because I’m refer to them in my

apache configuration.

worker.list=lb,status

Then if present, comment worker.common.host line.

Page 17 of 29

The next section is a section for our actual worker instances. Here, I

define workers for each of my servers, using the port values from the AJP

connectors and hosts of that servers.

I’ve also included optional property for these workers, “lbfactor”. The

higher the number of this property, the more preference mod_jk will give

that worker when load balancing. For example, if I had given the servers

lbfactors of 1 and 3, I would find that the round-robin load balancing would

prefer one server over the other with a 3 to 1 ratio.

worker.node1.port=50001

worker.node1.host=172.16.95.148

worker.node1.reference=worker.common

worker.node1.lbfactor=1

worker.node2.port=50001

worker.node2.host=172.16.95.149

worker.node2.reference=worker.common

worker.node2.lbfactor=1

Lastly, I’ve got a little configuration for my virtual workers. I’ve set the load

balancer worker to have type “lb” and listed the workers which represent

Tomcat in the “balance_workers” property. If I had any further servers to

add, I would define them as a worker and list them in the same property.

worker.lb.type=lb

worker.lb.balance_workers=node1,node2

Load balancers use a variety of methods to make sure that requests are

sent to the machine that has the most current session data. The easiest of

these, and the one we will use for this example, is called "sticky sessions".

Sticky sessions are an important feature if you rely on jSessionIDs and are

not using any session-replication layer. If sticky_session is True a request

always gets routed back to the node which assigned this jSessionID.

If that host should get disconnected, the request will be forwarded to

another host in our cluster, although not too successfully as the session-id is

invalid in its context. You can prevent this by setting sticky_session_force to

True. In this case if the host handling the requested session-id fails, Apache

Page 18 of 29

will generate an internal server error 500. This is especially important for an

application server that interacts with an OpenEdge database.

worker.lb.sticky_session=True

worker.lb.sticky_session_force=True

The latest version of mod_jk enables sticky sessions by default.

If method is set to Request the balancer will use the number of requests

to find the best worker. Accesses will be distributed according to the lbfactor

in a sliding time window. This is the default value and should be working well

for most applications.

worker.lb.method=Request

The only configuration that the status worker needs in our example is to

set the type to status.

worker.status.type=status

Here is an example of the final workers.properties file:

worker.list=lb,status

worker.common.type=ajp13

worker.common.socket_timeout=10

worker.common.connect_timeout=10000

worker.common.socket_keepalive=true

worker.common.ping_mode=I

worker.common.ping_timeout=10000

worker.common.retry_interval=100

worker.common.recovery_options=7

worker.lb.type=lb

worker.lb.balance_workers=node1,node2

worker.lb.sticky_session=True

worker.lb.sticky_session_force=True

worker.lb.method=Request

worker.status.type=status

worker.node1.port=50001

worker.node1.host= 172.16.95.148

worker.node1.reference=worker.common

worker.node1.lbfactor=1

worker.node2.port=50001

worker.node2.host= 172.16.95.149

worker.node2.reference=worker.common

worker.node2.lbfactor=1

Page 19 of 29

Save the changes and put the final workers.properties file into directory

/etc/httpd/conf on the Apache server.

Perform start of Apache HTTP Web Server:

systemctl start httpd

8 Verifying Load Balancing

To check the work of our configuration we use two test programs written

on ABL.

Create a file named testserver.p and write the following code:

DEFINE OUTPUT PARAMETER cHostName AS CHARACTER NO-UNDO.
INPUT THROUGH 'hostname'.
REPEAT:
 IMPORT UNFORMATTED cHostname.
END.
INPUT CLOSE.

testserver.p program – it is backend, which will run on node1 and node2

application servers. Compile this file to get the r-code and place it in the

openedge/ directory of instances node1 and node2.

The license Progress Production Application Server for OpenEdge allows
to run only the compiled code.

Create a file named testclient.p and write the following code:

DEFINE VARIABLE AppHandle AS HANDLE.
DEFINE VARIABLE cHostName AS CHARACTER.
DEFINE VARIABLE ret AS LOGICAL.

DEFINE VARIABLE pasHost AS CHARACTER INIT "172.16.95.146" NO-UNDO.
DEFINE VARIABLE pasPort AS CHARACTER INIT "80" NO-UNDO.

CREATE SERVER AppHandle.

ret = AppHandle:CONNECT("-URL http://" + pasHost + ":" + pasPort +

"/apsv").
IF ret THEN
 RUN testserver.p ON AppHandle(OUTPUT cHostName).

MESSAGE cHostName VIEW-AS ALERT-BOX INFORMATION BUTTONS OK.

QUIT.

Page 20 of 29

In this program the variable pasHost must specify the hostname or the

IP-address of the Apache HTTP Web server, in our case it 172.16.95.146. In

the variable pasPort must specify the port number by which you access the

web server, in our case it the standard port 80.

Run testclient.p several times:

mpro -p testclient.p

As a result, every time you should show a different hostname, depending

on what instance of Tomcat load balancing connected:

┌──── Information ─────┐

│ node2 │

│ ──────────────────── │

│ <OK> │

└──────────────────────┘

┌──── Information ─────┐

│ node1 │

│ ──────────────────── │

│ <OK> │

└──────────────────────┘

If your implementation of load balancing does not work, first of all review

the Apache HTTP Web Server logs (by default in /var/log/httpd), mod_jk

logs (mod_jk.log, defined by JkLogFile parameter in httpd.conf file), and

logs of each instance of PAS for OpenEdge, which are located in

instance_name/logs directory.

Page 21 of 29

8.1 Connect worker instances to the database

And in conclusion a little bit about the database server, which is

represented in our configuration in the figure at the beginning of the article.

In order to our worker instances node1 and node2 can connect to the

sports2000 database, we need to point out connection parameters in the

configuration file instance_name/conf/openedge.properties.

This can be done manually by editing agentStartupParam parameter in

section [AppServer.SessMgr]. This parameter uses a multisession manager

at the start of the agents. The parameter can be changed online while an

instance work, but this change affects only new agents that will start after

changing the value.

Example of [AppServer.SessMgr] section:

[AppServer.SessMgr]

agentStartupParam=-db sports2000 -H 172.16.95.143 -S 20333

For change the value of the agentStartupParam parameter can be using

oeprop script. To do this in the bin directory of an instance, we need to

execute the following command:

oeprop.sh AppServer.SessMgr.agentStartupParam=db_connection_param

Example of command for our worker instances:

oeprop.sh AppServer.SessMgr.agentStartupParam="-db sports2000

-H 172.16.95.143 -S 20333"

To test the connection, change testserver.p code as follows:

DEFINE OUTPUT PARAMETER vCustName AS CHARACTER NO-UNDO.

FOR FIRST Customer NO-LOCK.
 vCustName = Customer.Name + ' on PAS '
 + SUBSTRING(SESSION:SERVER-CONNECTION-ID,INDEX(SESSION:SERVER-CONNECTION-
ID,".") + 1).
END.

Page 22 of 29

Then, change testclient.p as follows:

DEFINE VARIABLE AppHandle AS HANDLE.
DEFINE VARIABLE ret AS LOGICAL.

DEFINE VARIABLE pasHost AS CHARACTER INIT "172.16.95.146" NO-UNDO.
DEFINE VARIABLE pasPort AS CHARACTER INIT "80" NO-UNDO.

DEFINE VARIABLE i AS INTEGER INIT 0 NO-UNDO.
DEFINE VARIABLE j AS INTEGER INIT 10 NO-UNDO.
DEFINE VARIABLE cPASMes AS CHARACTER.

DEFINE TEMP-TABLE tTab NO-UNDO
 FIELD vMess AS CHARACTER FORMAT "X(30)".

CREATE SERVER AppHandle.

REPEAT i=1 TO j:

 ret = AppHandle:CONNECT("-URL http://" + pasHost + ":" + pasPort +
"/apsv").
 IF ret THEN
 DO:
 RUN testserver.p ON AppHandle(OUTPUT cPASMes).
 CREATE tTab.
 tTab.vMess = cPASMes.
 AppHandle:DISCONNECT().
 END.
 ELSE
 LEAVE.
END.

FOR EACH tTab NO-LOCK:
 DISPLAY tTab.
END.
QUIT.

Compile the programs and copy the r-code into the catalog

instance_name/openedge. Now, as a result of running testclient.p program,

on the screen will display a list of messages that are generated in turn

depending on which application server the load balancer sent the request to.

Lift Tours on PAS node1

Lift Tours on PAS node2

…

…

Lift Tours on PAS node1

Lift Tours on PAS node2

At this point I finished and I hope that this article will be useful as a start

point in learning and configuring load balancing for the new application

server – Progress Application Server for OpenEdge.

Page 23 of 29

9 Additional materials

Monitoring load balancing

To monitor the load balancer, we have several options. The first of them

is JK Status Manager, which available for us through web browser.

http://<lb-hostname>/status

With JkStatusManager the tomcat cluster worker can temporarily disabled

for maintenance reasons e.g. software installations, updates or application

reconfiguration. To disable a tomcat instance in a cluster set the worker

status to 'disabled'. Before doing some maintenance, be sure that there are

no active sessions remains on this tomcat worker.

Page 24 of 29

The value 'disabled' means that no new further sessions will be created by

the load balancer on this tomcat worker. If all sessions of the worker are

finished or timed out the worker is cluster released and can be configured.

In addition, we can manage our worker instances by change some of their

properties.

Page 25 of 29

Other options it is log files of Apache, MOD_JK and PAS for OpenEdge

instances. Thus, if your balancer does not work, you should look at the log

files and JK Status Manager.

▪ Log files of Apache and Mod_JK

• /etc/httpd/logs/

access_log

error_log

mod_jk.log

▪ PAS for OpenEdge logs

• <PAS-instance-name>/logs/

<PAS-instance-name>.agent.log

How to add new PAS instance by copy existing

▪ Stop existing instance, for example node2

• Disable and stop worker instance in the JK Status Manager

• Stop PAS instance by “tcman.sh stop”

• Clean logs by “tcman.sh clean”

▪ Copy instance by OS command

cp -R $WRKDIR/node2 $WRKDIR/node3

▪ Start existing instance (node2) and enable them for balancing in the JK

Status Monitor

▪ Register new instance

$DLC/servers/pasoe/bin/tcman.sh register node3 $WRKDIR/node3

Page 26 of 29

▪ Change ports for the new instance (node3)

tcman config psc.as.http.port=<new http port>

tcman config psc.as.https.port=<new https port>

tcman config psc.as.ajp13.port=<new ajp13 port>

tcman config psc.as.shut.port=<new shutdown port>

▪ Allows AJP13 port of new instance in the SELinux

semanage port -a -t http_port_t -p tcp <AJP13 port>

▪ Add new worker instance into worker.properties

cd /etc/httpd/conf

vim worker.properties

worker.node3.port=<AJP13 port>

worker.node3.host= <worker host or IP>

worker.node3.reference=worker.common

worker.node3.lbfactor=1

worker.lb.balance_workers=node1,node2,node3

▪ Restart Apache server

systemctl restart httpd

SELinux

Because of SELinux policy, a service is normally allowed to run on a

restricted list of well-known ports. For example, in the case of the httpd

service, this list is 80, 443, 488, 8008, 8009, 8443. To allow a service to use

non-standard ports, you need to follow a specific procedure to change the

SELinux policy. This is important, if we want to add more than one instance

of Tomcat (PASOE) to the same server with separate AJP13 ports to configure

load balancing.

First install the setroubleshoot-server (to get the semanage command) if

not installed yet:

yum install -y setroubleshoot-server

Page 27 of 29

Check the status of SELinux:

getenforce

To get the list of all restricted ports by service, type:

semanage port -l

To get the list of well-known ports for the httpd service, type:

semanage port -l | grep -w http_port_t

To allow the httpd service to run on the 50001 tcp port (-a for add), type:

semanage port -a -t http_port_t -p tcp 50001

Page 28 of 29

Your Notes:

Page 29 of 29

	2 Introduction
	3 Why we need load balancing?
	4 Load Balancing for Apache Tomcat
	5 Create and configure the worker instances
	5.1 Configuring of virtual machines
	5.2 Creating and configuring the worker instances
	5.2.1 Creating a node1 instance
	5.2.2 Creating a node2 instance

	6 Installing and configuring Apache HTTP Server
	6.1 Installing Apache
	6.1.1 Installation MOD_JK on the Apache HTTPD
	6.1.2 Configuring Apache for load balancing

	7 Creating and deploying the worker.properties file
	8 Verifying Load Balancing
	8.1 Connect worker instances to the database

	9 Additional materials

